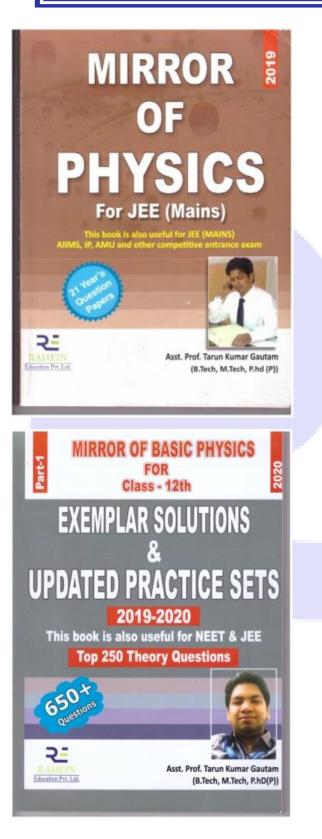
RAHEIN EDUCATION PVT. LTD.

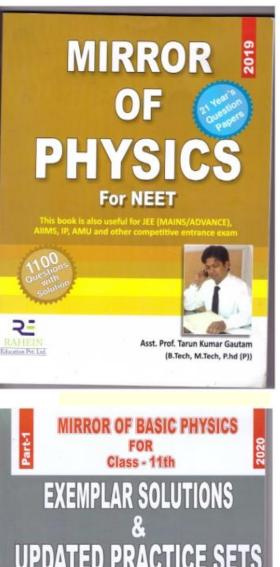
RAHEIN EDUCATION www.raheineducation.com
PHYSICS

CONTACT: 9205010851

Website: www.raheineducation.com

BY


Asst. Prof. Tarun Kumar Gautam (B.Tech, M.Tech, PhD (P)) Currently working in Jamia Hamdard, (HSC), Delhi Working on Nano Technology with Rise University, USA Author of 8 books regarding Physics and Engineering Subject.


Ex-Faculty of Rajshree Institute of Management & Technology (RMIT), Braeilly, Uttar Prdesh

Ex-Faculty of Assistant professor in Krishna Engineering Collage (KEC), Ghaziabad, Uttar Prdesh Member of Educational Project in University of Petroleum and Energy Studies (UPES), UK

ERAHEIN EDUCATION PHYSICSwww.raheineducation.com

UPDATED PRACTICE SETS 2019-2020 This book is also useful for NEET & JEE Top 250 Theory Questions

Asst. Prof. Ta

2-

Education Pvt. Ltd

Asst. Prof. Tarun Kumar Gautam (B.Tech, M.Tech, P.hD(P))

DATE :__/__/ PAGE Chapter-7 (Alternating Currents) AC → Alternating Current DC → Direct Current T Current change with time is called "Alternating averent?" t Ewount not change with time is called Direct current " $I = Iosin(\omega t)$ I = To (OS(WZ) I TY2 IT 1/2 n'y ,314 a t I = Io Sincot I = Io cosat T >> Time period t = T/yt = T/2 t - Instant time t = 37/4 E = TGOOD WRITE

DATE:__/__/ Here, $\omega = 2\pi \lambda$ W = 2TT _ Time period V = E = Potential / Emf [V=E=IR] E = Eo sincot, E = Eo cas cot Resistor -> Resistange \bigcirc Capacitor - Capacitance 2 3 mm Inductor -> Inductance A.C. (Sign of Alternating Coursent) (\mathbf{v}) (4) 5 or 141 They provide D.C current 11-Battery Cell moo It www LCR circuit GOOD WRITE

DATE : __/__/ PAGE Circuit with Resistance (R) A·C R AMM , Applied Voltage E = Eo Sin cot = Eo sin cot Io → max current IXR $I = \frac{E_0}{R} \sin \omega t$ Eo → max. voltage I = Jo Sincot E = Eosincot Note I = Josin cot graphical / wave diagram E6 I Phase angle $[\phi = 0]$ V Voltage & Current are in same phase. · Amplitude of avvient is less than the amp. of the Voltage • Voltage on avvients are impaired phase current each other in pure avvient.

DATE : ____/ Phasor Diagram - Eo E I Jo ÷ fcot A.C. Circuit containing Inductance only E = Eo Sincot Emf in Inductor E = -LdI - dtFrom eqn D & D LdI = Eosincotdt $dI = E_0 Sin \omega t dt$ Integrate both side $\int dI = \int \frac{E_0}{L} \sin(\omega t) dt$

DATE :__/__/ PAGE $dI = E_0 \int \sin \omega t dt$ $I = \frac{E_0}{L} \left(\frac{-\cos \omega t}{\omega} \right)$ $I = -\frac{E_0}{L} \left(\frac{\cos \omega t}{\omega} \right)$ $I = -\frac{E_0}{L\omega} \cos \omega t$ Using the identity, $-\cos \omega t = \sin \int \omega t - \pi \sqrt{2}$ $I = I_0 \sin\left[\omega t - \frac{\pi}{2}\right]$ / Eosincot Eo A Io sincot Io T Inductive Reactance Ay, E = IR, J = ER. $I = E_0$ Lw X_L is Inductive Reastance, X_L = wL $X_{1} = 2\pi \nabla L$ GOOD WRITE

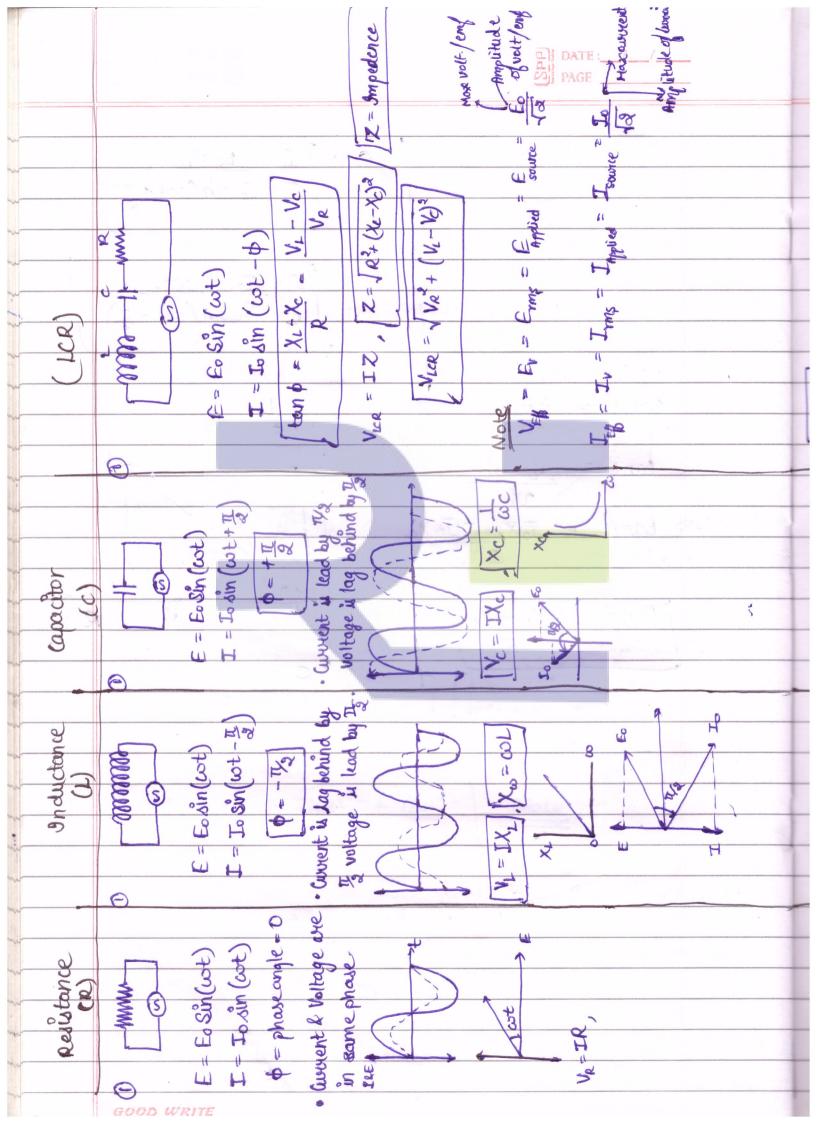
DATE : __/__/ XLA Note E = Eosinwt $I = Iosin(wt - \pi)$ · Current is lag behind by It from voltage · Voltage is lead by Type from current Phase difference = 1/2 Phase diagram graph EQI Eo TE 60 I wt T T I $X_L = \omega L$ → Unit = ohm (_2) = Hsec!

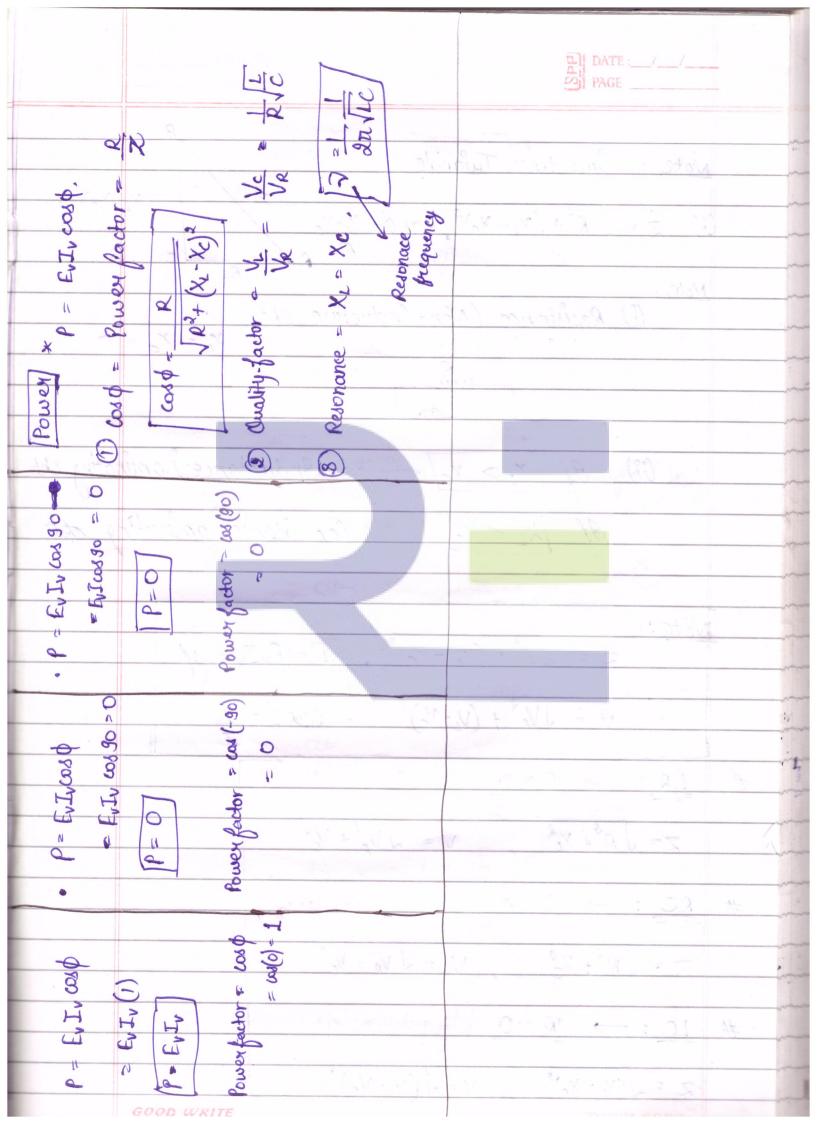
DATE :__/__/ \bigcirc E = Eosinwt Rejistance Inductor Capacitor MM 110 mm $E = E_0 \sin(\omega t)$ E = Eosincot E = Eosin (wt) $I = Iosin/\omega t - \pi$ I = Iosin (wt - TL I = Josincot phase angle - $\phi = + \frac{\pi}{2}$ phase angle, $\phi = -\pi$ $\phi = \text{phase angle} = 0$ XL = COL $X_c = 1$ 1 ωq Inductive Reactance capacitative Reactance A.C. Circuit Containing Capacitor only. Q = CVV=Q C Q = CXV = CEQ = CX Fo Sincot Differentiation both side $J = dQ = d(CE_{o}sin\omega t)$ dt = dtGOOD WRITE

DATE :__/__/ I = CEO d (sincot) dt $J = CE_{0} \cos \omega t \times (\omega)$ I = Eo (CW) × Coscot J = Eo coscot = Jo coscot Vas $J = Jocos(\omega t) = Josin(\omega t + TL)$ $X_c = \frac{1}{\omega c}$ $\omega = 2\pi \mathcal{D}$ $x_{c} = \frac{1}{2\pi \sqrt{x}}$ Xel Note E = Eosin COt $\oint = + \frac{\pi}{2}$ $I = Iosin(cot + \pi)$ Convent lead by Ty for voltage. Voltage lag behind T/2 for avoients

DATE :__/__/__ Graphical Representation FE&I E. L TY2 cot s cot 0 Phase Diagram Eo To $X_c = 1$ ωc $\chi_c = 1$ $2\pi \nabla \chi C$ Unit X = 'sec f' -) sec'f D = Becf Unit (13) GOOD WRITE

PAGE DC circuit -> D=0 $X_L = \omega L = \frac{2\pi P X L}{2} =$ $X_L = O$ $X_{C} = \int \frac{1}{\omega c} \frac{1}{2\pi v x c} = \int \frac{1}{\omega c} \frac{1}{\omega c} \frac{1}{2\pi v x c} \frac{1}{\omega c}$ Xc = 00 <u>Note</u> Virtual Fr TV root mean square - Ems Joms effecitive -> Fello Applied -> Fello Applied -> Fello Jeff Japptied / J I source / I Source -> A source / -(n) $E = E_{yb} = E_v = E_{rms} = \frac{E_o}{\sqrt{2}}$ Source [I = Jeff = Ii = Joms = Io Jo Amplitude of source * Eo = Max. voltage / Potential Emf Io = Max current/current Amplitude of current


DATE :__/__/ PAGE • Instantaneous voltage -> E = Eosincot Instantaneous current -> I = Iosincot . What will be the Instantaneous voltage for Ques A.C supply of 220 volt & at 50 heartz? E=220 volt, D=50 Hz AN $F = F_0$ Eo = J2XE Eo = 280 × JE = 311 volt E = Eo sin wt E = 311 sin (207×t) = 311 sin (20×50×t) E = 311 sin (loont) volt An alternating voltage given by, $V = 140 \sin (314t)$ connected across a pure Resistance of 50 Ω , find the rms current through Resistance? $V = 140 \sin (314t)$ Vus due w, 3/4 =) 2727 = 3.14 $V = V_0 \sin(3/4t)$ P = 3.14 2π $E_0 = I_0 \times R$, E = 140 $E_{0} = IR \longrightarrow I_{0} = E_{0} = I4P \Rightarrow |I = I_{0} = I4$ $R = SP = \sqrt{I} = I4$ $\sqrt{I} = I2$ 2 GOOD WRITE


DATE :__/__/ PAGE Unis The Instantaneous Current from AC source is J=gosin/3142 when in frequency of source & vitue value of current. Ans J = Josin Wt I = 10 Sin (3142) $7 = 1 \times 3.14 Hz$ 2π $\omega = 3.14$ 217 = 314 Io = 10 Ju = 10 1 I = 2A, I2 = 3A, I3 = 4A, I4 = 5A find the root mean square value of current? Ans $I = I_1^2 + I_2^2 + I_3^2 + J_4^2 \rightarrow J_4 A$ A light Bull is rated at 100 watt for 220 volt ens Supply five (a) Resistance of Bulb? (b) Peak voltage of Source? (c) r.m.s current through the Bulb? $P = \frac{V^2}{p} = VI = I^2 R$ this V=IR JZV

DATE :__/__/__ (a) $R = V^2 = 220 \times (2)^2 = 484.2$ 100 (b) $E_v = E_0$, $E_0 = E_v \times \sqrt{2}$, $220\sqrt{2}$ (c) $P = EI \Rightarrow I = \frac{P}{E} = \frac{100}{220}$ $P = V^2 \implies I^2 R \implies VI \implies co$ Note Resistance : -V $E = E_0 sin \omega t$ $J = J_0 sin \omega t$ $V = E_o sin(\omega t)$ • Anductance : -I = Iopsin (wt - TE) $V = E = E_0 Sin$ $I = I_0 Sin \left(\omega t + \pi \right)$ 2Capacitor :--AC Circuit containing LCR : R mon -mm T. IT 142 3 GOOD WRITE

DATE:___ Let, Applied Current I, I = Io sin(cot) max. voltage across Resistance (R) Vo = IoR Voltage across Inductor lead current by 90° LLC R VL = ToxL VL Eo Voltage across capacitor lag behind by 90° X¢ $V_c = I_o \times C$ Assume 2>C $(OK)^{2} = (KA)^{2} + (DA)^{2}$ Note $E_{0}^{2} = (B'O)^{2} + (OA)^{2}$ OR= I- IoSin wit E=Eosin cob $E_{0}^{2} = (V_{L} - V_{c})^{2} + (V_{R})^{2}$ (2) L ⇒ E = Eosincot $I = \frac{1}{2} \delta \sin \left(\omega t - \frac{71}{2} \right)$ $E = \sqrt{(V_L - V_c)^2 + (V_R)^2}$ $J_{0} \times Z = \sqrt{(J_{0} \times L - J_{0} \times L)^{2} + (J_{0} R)^{2}}$ $Z = \sqrt{(\chi_{L} - \chi_{C})^{2} + R^{2}}$ F = Fo Sinf wit + IL

DATE : __/__/ $E = \frac{Eosin \omega t}{J = Josin(\omega + \frac{\pi}{2})}$ 3C = 1 I = <u>Iosinωt</u> E= Eosin(wt- π) KA tang 7 $\tan\phi = \frac{V_L - V_C}{V_C}$ $tan \phi = \frac{v_R}{V_R}$ $tan \phi = \frac{J_0 X_R}{J_0 X_R}$ K Eo 20 Ó tand XL - Xc Ve = ryg C 4.10 -GOOD WRITE

Note: Impedence Tuiangle $(X_L - X_c)$ (i) $Z = \int R^2 + (X_1 - X_2)^2 \tan \phi = \frac{X_1 - X_2}{R}$ (i) Resistance (Non-Inductive ckt) $\dot{X}_{L} = \dot{X}_{C} = O$ -un (ii) If [x_ > x_] -> Inductance Dominating ckt If [x1 < xc] - > Capacitance Dominating cet $z = \sqrt{R^2 + (x_1 - x_2)^2}, P = E_v J_v cosp$ Note: $V = \sqrt{V_{R}^{2} + (V_{L} - V_{C})^{2}}, \quad \text{feast } \phi = \frac{R}{Z}$ LR: -> C=O # $Z = \sqrt{R^2 + \chi_L^2}, \quad V = \sqrt{V_R^2 + V_L^2}$ $RC: \rightarrow L=0$ # $Z = \sqrt{R^2 + \chi_c^2}$, $V = \sqrt{V_R^2 + V_c^2}$ $\# LC : \longrightarrow R = 0$ $Z = \sqrt{(X_{L} - X_{C})^{2}}, V = \sqrt{(V_{L} - V_{C})^{2}}$ GOOD WRITE

DATE : / / Note: P = dw = EIdt Energy stored in Capacitor $\begin{bmatrix} E = 1 CV^2 = 10V = 10^2 \\ 2 C \end{bmatrix}$ Energy Stored in Inductor Let emf (e) induced in Inductance. E = -LdIa Power: P = dw EI dt Let du is small workdone dw EI dw = EI.dt dw = (-LdI) I. dt dw = - LIdI Integration both side Jdue = - LJIdI $\omega = L\left[\frac{I^2}{2}\right] \Rightarrow \left[\omega = \frac{1}{2}I^2\right]$

Ques 1.5 mit Inductor in Circuit stores a maximum energy of 14 u.J. What is peak current? Definen, L= 1.5 mtH = 1.5 × 10⁻³ H Solu E= 14 UJ => 14 × 10 ° J As we know, $/\omega = 1LI^{2}/2$ $14 \times 10^{-6} = 1 \times 1.5 \times 10^{-3} \times I^{2}$ $= 14 \times 10^{-6} \times 2 \times 10^{-3}$ $1^{.5} \times 10^{-3}$ $I = \sqrt{\frac{28 \times 20^{-2}}{15}}$ $T = I_0$ $\sqrt{2}$ And we know : $J_{0} = J \times \sqrt{2}$ $= \sqrt{\frac{28 \times 2 \times 10^{-2}}{15}}$ 1.5mt Inductor in Circuit stores energy of 14mJ. hus Sola atrat NOT GOOD WRITE

PAGE Power Factor (cos \$) of an A.C Power Factor is ratio of True power to apperent power. COS &= True Power Apparent Power <u>P</u> EvIv $\frac{\cos\phi}{Z} = \frac{R}{Z} \frac{R}{Z} \frac{R}{Z} \frac{1}{Z} \frac{VR}{V_{z}}$ mm I 100 volt Hovolt 0-Ques Find the 80volt Power factor? (N) VR = 80 volt, VL = 100 volt, Ve = 40 volt Solu $V_z = \sqrt{V_R^2 + (V_L - V_C)^2} = -\sqrt{(80)^2 + (100 - 40)^2}$ $\cos\phi = \frac{V_R}{V_Z} = \frac{80}{\sqrt{60^3 + 60^2}} = \frac{80}{100} = \frac{4}{5} = \frac{4}{10}$ that have tendence to skillate at In RL circuit Potential difference across Inductor mes. (L) is sovolt & potential difference across Resistance (R) is 90 volt. If sms value of avvient is 3A. what is Impedence of circuit & what is phase angle blue voltage & Current ? Vi = 120 wolt, VR = govolt John T = 3A As we know, $V = \sqrt{V_p^2 + (V_1 - V_c)^2}$

DATE :___/___/___/___ 90 RL circuit, Vc=0 $V = \sqrt{V_{p}^{2} + V_{c}^{2}}$ $V = \sqrt{(120)^2 + (90)^2}$ 150 volt 2 V= IZ and $\frac{V}{I} = \frac{37.5}{47}$ 37.5 Z = 37.5 $\tan \phi = \frac{R}{z}$ (ii) R2 + (X2-Xc)2 tand = # Resonance } It is phenomenon of Resonance is common among a system that have tendency to oscillate at particular frequency called " Natural frequency of oscillation of system." If such a system in which a frequency is equal to natural frequency, the amplitude of oscillating become large called Resonance. at Resonance, F Applied Frequency = Natural frequency GOOD WRITE

PAGE Current I=Io Da Io Io T Frequency w 3 w, at Resonance D. $\chi_L = \chi_C$ $\omega L = 1$ ωC $\omega^{2} = 1$ LC41 LC 2 2n IC $(2\pi \gamma)^2 = \frac{1}{LC}$ Resonance Frequency $\sqrt[3]{2} = \frac{1}{4r^{2}LC}$ Note $) X_2 = X_C$ $X_{L} = \omega L$ $X_{C} = L$ ωC Resonance frequency. is $r = 1 \times 1$ $2\pi \sqrt{LC}$ GOOD WRITE

DATE : __/___ PAGE ____ AT \bigcirc Resonance R TATTO mm more It $X_L = X_C$ $Z = \sqrt{R^2 + o^2}, Z = R$ $Z = \int R^{2} + (X_{L} - X_{C})^{2}$ ma IVEV cosp P = $cos \phi = R = R$ $Z = \sqrt{R^2 + (X_c - X_c)^2}$ $\rightarrow \cos \phi =$ $\tan\phi = \frac{\chi_{L} - \chi_{c}}{p} = \frac{V_{L} - V_{c}}{V_{R}}$ $\phi = 0$ P= EVIV $X_{L} = \omega L = 2\pi \nabla L$ $X_{C} = \frac{1}{\omega c} = \frac{1}{2\pi \nabla c}$ $P = E_0 \times I_0 = \sqrt{2}$ EoIo $V = \sqrt{V_R^2 + (V_L - V_C)^2}$ IV= VRI Quality factor [sharpness of resonance] -> It is ratio of voltage dress Inductor or capacitor to applied voltage across R. Q.F = VL or Ve VR -----Q.F 2 NC $Q \cdot F = \frac{V_L}{V_R}$ GOOD WRITE

DATE :_____ $Q \cdot F = \frac{V_c}{V_R}$ $Q \cdot F = V_L$ V_R $O \cdot F = \frac{I \chi_{L}}{\pi \rho} = \frac{\omega L}{R}$ $Q \cdot F = \frac{1}{\sqrt{LC}} \times \frac{1}{R} \Rightarrow \frac{1}{R} \sqrt{\frac{L^{T}}{LC}}$ $\frac{O \cdot F = 1}{\frac{1}{R \cdot C}} = \frac{1}{R \cdot C}$ Q.F. 1. I graph Vr. Dr = Resonant frequency, $\overline{\gamma}_{r} = 1$ $2\pi\sqrt{2}$ Average Power in LCR circuit (Inductive circuit) Let, Applied emf to LCR circuit is E& E = Eosin(wt) & current in long behind the applied emf ky phase angle (\$) [E = Eosin(cot)] $I = Io sin(wt - \phi)$

DATE :___/___/ PAGE ____ P= dw EI dt > du = small workdone du = EI dt due = (Easinewt) (Iosin(wt-q)) dt due = Eo Io (sincet) (sincet-\$)) dt dw = EoIo (sincot) (sincot cost - coscot sind) dt du = (EoJo sincet cost - FoJo sincet cost sint) dt due = Eo Io / 1- cos 2 cot) cos \$ dt - Eo Io (2x sin wt cos wt) sin \$dt du = EoIo wsødt - EoIo ws 2wt ws of at - EoIo (sin 2wt) sin øde Integrate both side fdw = <u>Folocos</u>, dt - Folocos flos (2wt) dt - Folosing fin 2wt dt $W = \underbrace{\operatorname{Eelo}}_{\mathcal{A}} \cos \left[T \right]^{T} - \underbrace{\operatorname{Eolo}}_{\mathcal{A}} \cos \left[\frac{\sin 2\omega t}{2\omega} \right]^{T} - \underbrace{\operatorname{Eolo}}_{\mathcal{A}} \sin \left[\frac{\sin 2\omega t}{2\omega} \right]^{T}$ $\frac{\omega = E_0 I_0 \cos \phi \left[T - 0 \right] - E_0 I_0 \cos \phi \left[2 \sin 2\omega T - sin 2\omega(0) \right] - E_0 I_0 sin \phi \left[-\cos 2\omega T + 2\omega \right]$ $\omega = \frac{f_{old} \cos \phi \cdot T}{2} - \frac{\cos \phi \left[\sin 4\pi \right]}{2} + \frac{\sin \phi \left[\cos 4\pi \right]}{2}$ $w = \frac{1}{2} \log \frac{1}{1} \log \frac{1}{1} - \frac{1}{1} \log \frac{1}{1} \log$ GOOD WRITE

 $\rightarrow [w] = E_0 I_0 \cdot T_{cos} \phi$ Here $P = ue = EoJo \times Tcosp$ $P = E_0 \times I_0 \cos \phi$ $\Rightarrow P = E_1 I_1 \cos \phi$ $P = E_v J_v \cos \phi$ P = EVIV - (R) $= -90^{\circ} \longrightarrow (L$ $\phi = +90^{\circ} \longrightarrow (c)$ P=0 Ques The Instanteneous employ A.C. Source is E = 300 sin 314 t. what is rms value of emf? Aux E = 300 sin 314 t Comparing with, ogn E = Eo.sin cot Then, Eo = 300 I, co = 314As we know, $\omega = 2\pi 7$ we know, $314 = 2\pi \overline{2}$ $\overline{2} = 314$ 2π Leonary : and, $E = E_0$ 300×52 Erms = 150/2

DATE :___/___/ Ques 9n 9nstanteneous current of AC, I = 5sin(3/4)t. What is rms value of averent ? Aw I = 5sin(3/4)tcomparing by eqn, I = Io sincot we get, $I_0 = 5$, $C_0 = 3/4$ As we know, Irms = Io ; 5 Anyere Ques Calculate the Alternating Current; 2A-0 RA $I_{SMS} = \underbrace{I_1^2 + I_2^2 + I_3^2}_{3} = \underbrace{(a)^2 + (-2)^2 + (a)^2}_{3} = \underbrace{4 + 4 + 4}_{3} = \underbrace{4 + 4 + 4}_{4} = \underbrace{4 + 4 + 4 + 4}_{4} = \underbrace{4 + 4 +$ Aus 12 = JU = 2 Ampere A pure Inductor of 25mH is connected to a, source of 270 volt, find the Inductive reactance and rms current in circuit if frequency of source i 50Hz ? $L = 25 \text{ mH} \Rightarrow 25 \times 10^3 \text{ H}$ $E_{\text{rms}} = 220 \text{ uolt} \qquad \gamma = 50 \text{ Hz}$ Ans GOOD WRITE

DATE : __/__/ PAGE $(i) \rightarrow \chi_{L} = \omega_{L}$ $\begin{array}{c} X_{L} = (2\pi\overline{7})L \\ = & 2x & 22 \\ \hline 7 \\ = & 55 \\ \hline 7 \\ \hline 7$ (ii) Erms = Irms (XL) $\frac{E_{rms}}{X_{L}} = I_{rms}$ $\frac{1}{220} = I_{rms} = \frac{20}{220} \times 7 = \frac{12 \cdot 7272}{12 \cdot 7272}$ $\frac{12 \cdot 7272}{X_{L}} = \frac{12 \cdot 7272}{55 \cdot 11}$ Find the maximum value of current when: an Inductance of one henry is connected to an $A \cdot C$ source of 200 volt, 50 Hz. $\overline{\gamma} = 50$ Hz, E = 200 volt, L = 1H Ques Ans Erms = IX2 $T = E_{TMS} = 200 \Rightarrow 200$ $X_{L} = 0.6363$ $= 200 \times 7 = 0.6363$ $= 200 \times 7 = 0.6363$ $I_0 = I \times J_2 \implies \frac{7}{11} = \frac{7}$ $T_{0} = \frac{7}{7} \times 1.41 \Rightarrow \frac{9.87}{11} \Rightarrow 0.8979 A$

DATE :___/___/ Ques A wil has an Inductance of 14 (i) At what frequency will it have a reactance of 3242 (ii) what should be capacity of a capacitor which has the same reactance at that frequency? Ans (i) L= 1H $X_L = \mathscr{L} = \mathscr{A}_{\pi} \widetilde{\mathcal{V}} L$ $3124 = 2\pi V(1)$ 7 = 3124×7 - 21,868 - 497 Hz 2×82 -44 (iii) X1 = Xc (same reactance), c=? $X_{c} = \frac{1}{2\pi C}$ $C = \frac{7}{2\pi \nabla x X_c} = \frac{7}{2x 22 \times 497 \times 3124} = \frac{7}{68315632}$ 6.9×107 1.01×107 f A 1.50 uf capacitor is connected to a 22volt, 50Hz source, find the capacitive reactance & current (ms & peak) in circuit. If the frequency is doubled what happens to capacitive reactance and current? leus Ans given C= 1.50 uf E= 22 volt 7= 50 Hz $X_{c} = 1 = 1$ $\omega c = 2\pi v c$ $\frac{X_{C}}{2} = \frac{7}{2} = \frac{7}{3300} = \frac{0.00212}{3300}$ GOOD WRITE

As we know, E = IXc $d2 = I \times X_c$ $J_{sms} = \frac{22}{Xc} = \frac{22}{7} \frac{22}{3300} \times \frac{7}{7}$ 3300 19371/1285/A => 0.0466 A Io = Irms × Ja = 0.466 x J2 her = 0.6505 If frequency is doubled then, 2'= 22 $\frac{x_{c}' = 1}{2\pi \sqrt{x_{c}'}} = \frac{1}{2\pi \sqrt{x_{c}'}}$ $\frac{x_{c}' = 1x_{c}}{2}$ notherrog illowren TEDHOTION TO AND ALLOP (I) lo - 26.7 31 10 000 10 000 Mind (in tob- = To a A I IMA to with poberal "Y

CBSE RESULT 2020

RAHEIN EDUCATION www.raheineducation.com
PHYSICS

Special Physics for NEET/JEE

Timing: 8:30a.m. to 10:30a.m. [Monday to Friday] Saturday: Test Fees: Rs. 25,000 and Online Test Series Rs. 1,000 Place: Rahein Education Pvt. Ltd. Contact us: 9205010851, 9711833446 For Free Download Notes: <u>www.raheineducation.com</u> E-mail: tarunkumar.csengg@gmail.com